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Abstract—In the labyrinthine landscape of macroeconomic 

data, where subtle anomalies can herald significant economic 

shifts, this paper proposes a novel hybrid framework for their 

accurate and timely detection. The framework effectively 

combines an Autoregressive Integrated Moving Average 

(ARIMA) model for solid baseline forecasting with Long Short-

Term Memory (LSTM) networks and a variational autoencoder 

that incorporates LSTM layers (VAE-LSTM) to capture 

complex residual patterns analysis. A unique dynamic weighting 

method, which includes temporal smoothing and differences in 

macroeconomic states, adaptively fuses the outputs of these 

models, leveraging their strengths across diverse economic 

scenarios. The proposed hybrid framework’s efficacy was 

evaluated on a dataset of 348 macroeconomic indicators from 

Brazil, Russia, India, China, and South Africa (BRICS) nations, 

covering 1970 to 2020. Empirical results show the framework 

outperforms other state-of-the-art (SoTA) methods: ARIMA, 

LSTM, VAE-LSTM, Autoencoder (AE), Isolation Forest (IF) 

and One-Class Support Vector Machine (OCSVM) achieving an 

F1-score of 0.915 with AUC of 0.926 and PR-AUC of 0.839. 

Furthermore, sensitivity analysis substantiates the framework’s 

robustness across different weighting configurations, 

maintaining consistent F1-scores between 0.887 and 0.915. The 

proposed framework offers a robust and adaptive approach to 

anomaly detection in complex macroeconomic time series, with 

potential applications in risk management, policy formulation, 

and economic forecasting. 

Keywords—Anomaly detection, BRICS economies, time series 

analysis, deep learning, LSTM networks, ARIMA models, 

variational autoencoders, economic forecasting 

I. INTRODUCTION 

   The prescient identification of anomalies in 

macroeconomic time series data is crucial for policymakers, 

financial institutions, and investors. These anomalies, 

manifesting as deviations from established patterns, often 

presage critical economic shifts, including financial crises, 

speculative bubbles, or economic downturns. While early 

detection enables preemptive measures and informed policy 

adjustments, the inherent complexity of macroeconomic 

data—characterized by non-stationarity, non-linear 

dependencies, and evolving economic regimes—presents 

significant challenges to conventional detection 

methodologies. Existing approaches, including statistical 

models like ARIMA and deep learning architectures like 

LSTM, demonstrate limitations when confronting dynamic 

economic conditions or require extensive parameter tuning, 

constraining their practical utility. 

This paper introduces a hybrid framework for anomaly 

detection that synergistically combines statistical modeling 

with advanced deep learning methodologies. Unlike existing 

approaches based on singular models or static ensembles, our 

framework implements a dynamic weighting mechanism that 

adaptively integrates model outputs based on performance 

metrics and prevailing macroeconomic conditions. The 

framework utilizes ARIMA for baseline forecasting and 

residual generation, complemented by LSTM networks and a 

VAELSTM architecture for complex pattern analysis. The 

primary contributions of this work are: 

• Novel Hybrid Architecture: Development of an adaptive 

framework combining ARIMA, LSTM, and VAE-

LSTM models with dynamic weighting mechanisms 

that respond to varying economic conditions. 

• Large-scale Validation: Comprehensive evaluation using 

348 macroeconomic indicators from BRICS nations 

(1970-2020), demonstrating superior performance 

(AUC: 0.926, PR-AUC: 0.839) compared to state-of-

theart methods. 

• Robustness Analysis: Empirical validation of framework 

stability across different weighting configurations (α ∈ 
{0.25,0.5,0.75}), maintaining consistent F1-scores 

(0.887-0.915). 

   This paper is organized as follows: Section II reviews 

related work in anomaly detection for macroeconomic time 

series. Section III details the proposed hybrid framework, 

including statistical and deep learning models, a dynamic 

weighting mechanism, and macroeconomic state 

differentiation. Section IV presents experimental results, 

comparing the hybrid framework’s performance with 

competing methods and analyzing its sensitivity to key 

parameters. Finally, Section V concludes and outlines future 

research directions. 

II. RELATED WORK 

    Detecting anomalies in time series data has been a subject 

of extensive research, with numerous proposed methods 

ranging from traditional statistical techniques to modern deep 
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learning approaches. Early work in this area often relied on 

statistical methods like those based on the identification of 

outliers, as exemplified by the work of Hawkins [1], which 

focused on defining and identifying data points that deviate 

significantly from the expected distribution. More recent 

efforts have explored the application of machine learning to 

this problem. Chandola et al. [2] provides a comprehensive 

survey of these techniques, including clustering, nearest 

neighbor, and classification-based methods, for anomaly 

detection. In the realm of macroeconomic time series, 

ARIMA models have been widely used for forecasting and 

anomaly detection [3]. For instance, Box et al. [3] thoroughly 

treat ARIMA models and their application to time series 

analysis. However, these methods primarily focus on linear 

patterns and may not adequately capture the complex, non-

linear relationships and evolving dynamics present in modern 

economic data. Furthermore, although ensemble methods 

have shown promise in improving forecasting accuracy, as 

discussed by Timmermann [4], their application in anomaly 

detection within dynamic economic regimes remains an area 

of ongoing research. The combination of forecasts, a key 

aspect of ensemble methods, has been studied extensively, 

with foundational work by Bates and Granger [5] highlighting 

the benefits of combining different forecasting models, 

particularly demonstrating that simple combinations can 

often outperform individual forecasts. 

   The advent of deep learning has opened new avenues for 

time series analysis and anomaly detection. Long Short-Term 

Memory (LSTM) networks, introduced by Hochreiter and 

Schmidhuber [6], have demonstrated particular effectiveness 

in modeling temporal dependencies in sequential data. For 

instance, Malhotra et al. [7] applied LSTM networks to 

anomaly detection in time series, showing their ability to 

learn long-range dependencies. Munir et al. [8] proposed 

DeepAnT, a deep learning-based approach using 

convolutional neural networks for unsupervised anomaly 

detection, achieving promising results on various datasets. 

However, these methods often require substantial volumes of 

data and may suffer from a lack of interpretability, making it 

difficult to understand the reasons behind specific anomaly 

classifications. VAE [9], as explored by An and Cho [10], 

offer a probabilistic approach to anomaly detection by 

learning latent data representations. While VAEs have shown 

promise in other domains, their application to complex 

macroeconomic time series, especially in the context of a 

hybrid framework, requires further investigation. Further 

exploration of autoencoders for anomaly detection has been 

carried out, including their use in reducing data 

dimensionality and improving detection accuracy through 

reconstruction-based anomaly scoring [11], [12]. 

   Identifying economic regimes or macroeconomic states is 

crucial for developing adaptive anomaly detection systems. 

Applying regime-switching models to specific 

macroeconomic variables, such as interest rates, has been 

explored by Ang and Bekaert [13], demonstrating the 

practical relevance of these methods in identifying distinct 

phases in economic data. However, these statistical 

approaches may not fully leverage the capabilities of deep 

learning in capturing intricate nonlinear patterns that vary 

across different economic states. While not solely focused on 

economic data, the principles introduced by Fawcett and 

Provost [14] in activity monitoring can be adapted to detect 

significant changes in economic trends, further highlighting 

the need for methods to adapt to different economic regimes. 

Hybrid models that combine statistical and machine learning 

techniques have gained increasing attention in recent years, 

aiming to leverage the complementary strengths of different 

approaches. Zhangs work [15] on combining ARIMA with´ 

neural networks for time series forecasting demonstrated the 

potential benefits of such hybrid approaches, showing 

improved forecasting accuracy compared to using either 

model alone. More recently, Lahmiri et al. [16] presented a 

hybrid model combining ARIMA with deep recurrent neural 

networks for commodity price forecasting, showcasing the 

applicability of hybrid approaches in related economic 

domains. A recent study by Malgi et al. (2024) [17] proposed 

a hybrid framework for macroeconomic forecasting in 

BRICS nations, integrating ARIMA with transformer models 

and incorporating an attention mechanism to enhance 

interpretability. This work is particularly relevant as it 

directly addresses the complexities of emerging economies. 

Despite these advancements, developing hybrid models 

specifically designed for anomaly detection in 

macroeconomic time series, particularly those incorporating 

dynamic weighting and macroeconomic state differentiation, 

remains an open research area. Our work addresses this gap 

by proposing a novel framework combining ARIMA, LSTM, 

and VAE with LSTM layers models and incorporating a 

dynamic weighting mechanism that adjusts model 

contributions based on the prevailing macroeconomic state 

identified through a data-driven approach. This approach 

draws inspiration from Bayesian model averaging [18] and 

other ensemble methods [19], [20] but uniquely integrates 

these concepts with deep learning models for enhanced 

anomaly detection in dynamic economic environments. 

Siripurapu [21] proposed a hybrid model focused on anomaly 

detection in economic time series, but our approach is 

distinguished by its novel combination strategy and the 

specific models used. 

III. METHOD 

A. Dataset 

   The experiments were conducted using a comprehensive 

dataset of macroeconomic indicators for the BRICS nations, 

sourced from the World Bank’s BRICS Economic Indicators 

database. This dataset encompasses 348 economic indicators, 

providing annual observations spanning from 1970 to 2020. 

Key indicators within the dataset include Gross Domestic 

Product (GDP), government final consumption expenditure, 

inflation rates, trade balances, adjusted savings, and other 

pertinent national accounts data. In total, the dataset 

comprises approximately 87,000 data points, offering a 

detailed representation of the economic landscape of these 

five emerging economies over a five-decade period. For the 

purpose of this study, the dataset was preprocessed to include 

encoded versions of categorical variables such as 

CountryCode (represented as CountryCode encoded) and 

SeriesName (represented as SeriesCode encoded) to facilitate 

model input. 
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B. Proposed Work 

  This study proposes a hybrid anomaly detection framework 

that synergistically combines statistical modeling techniques 

with deep learning methodologies to effectively identify 

anomalies in macroeconomic time series data. The 

framework consists of two primary stages: (1) baseline 

forecasting and residual generation using an Autoregressive 

Integrated Moving Average (ARIMA) model, and (2) 

advanced residual analysis using deep learning models, 

specifically Long Short-Term Memory (LSTM) networks and 

a variational autoencoder (VAE) with LSTM layers. The 

outputs of these models are integrated through a dynamic 

weighting mechanism that adapts to the strengths of each 

model and the evolving characteristics of the data. The 

specifics of each stage are detailed in the following 

subsections. 

   Following the presentation of the algorithmic framework, 

we now provide detailed explanations for the equations 

involved. 

In Stage 1, the normalized error of the ARIMA model at time 

t, eARIMA(t), is calculated using Equation (1). This involves 

computing the root mean squared error (RMSE) over a rolling 

window of size w and normalizing it by the time-varying 

standard deviation, σt. For Stage 2, the LSTM error, eLSTM(t), 

is similarly computed via Equation (2), with yˆi,LSTM 

representing the LSTM model’s predictions. The 

reconstruction error of the VAE-LSTM, eAE(t), is calculated 

using the L2 norm between the input xt and its reconstruction 

g(f(xt)), as shown in Equation (3). The composite deep 

learning error, eDL(t), is then derived as a weighted average 

of the LSTM and VAE-LSTM errors, with α as the balancing 

parameter (Equation (4)). 

   The dynamic weighting mechanism begins with the 

computation of initial weights for the ARIMA and deep 

learning components via Equations (5) and (6), respectively. 

These weights are determined using a softmax function 

applied to the inverse of their respective error metrics, scaled 

by a sensitivity parameter, γ. Temporal smoothing is then 

applied to these initial weights to ensure stability, as defined 

in Equation (7). The adaptive smoothing parameter, β(t), is 

adjusted based on market volatility, σm(t), which is calculated 

using a rolling window of length T (Equation (9)). 

   Further, the model incorporates economic regime 

awareness by adjusting the weights based on the identified 

economic regime, Rt. The final adjusted weight for each 

model k at time , is given by Equation (10), where 

ϕk(Rt) is the regime adjustment function. This function is 

defined in Equation (11), with δk as the regime-specific 

adjustment factor, and I(Rt = r) being an indicator function for 

the specific regime r. 

   Anomaly scores for each component are calculated using 

Equations (12) through (14). For the ARIMA model, the 

anomaly score sARIMA(t) is the absolute difference between the 

actual and predicted values, normalized by the estimated 

uncertainty σˆARIMA(t). For the LSTM and VAE-LSTM, 

anomaly scores sLSTM(t) and sAE(t) are similarly computed, 

Algorithm 1 Hybrid Framework for Anomaly Detection in 

Macroeconomic Time Series 

Require: Dataset , macroeconomic time series data 

for BRICS nations. 

Ensure: Anomaly scores S(t) for each time step t. 
1: Stage 1: Baseline Forecasting and Residual Generation 

2: Determine optimal ARIMA order (p, d, q) using auto_arima on 

a subset of the data. 
3: Fit ARIMA model to generate forecasts yˆi,ARIMA for each time 

step i. 
4: Calculate normalized residuals: 

 

 

5: Stage 2: Deep Learning-Enhanced Residual Analysis 

6: Train an LSTM network to model temporal dependencies in the 

residuals. 
7: Calculate LSTM error: 

  (2) 

8: Train a VAE-LSTM to learn a latent representation of the 
residuals. 

9: Calculate Autoencoder reconstruction error: 

 

 

eAE(t) = ∥xt − g(f(xt))∥2 

 

10: Compute the composite deep learning error: 

 

(3) 

eDL(t) = αeLSTM(t)+(1 − α)eAE(t) 

 

11: Dynamic Weighting Mechanism 
12: Compute initial weights using softmax function: 

 

(4) 

  (5) 

  (6) 
 

13: Apply temporal smoothing to the weights: 

 

 

wk∗(t) = β(t)wk∗(t − 1)+(1 − β(t))w˜k(t) 

14: Adjust weights based on economic regime Rt: 

(7) 

wkfinal(t) = wk∗(t)ϕk(Rt) 

15: Anomaly Score Calculation 
16: Calculate component-specific anomaly scores: 

 

(8) 

  (9) 

  (10) 

  (11) 
 

17: Calculate the composite deep learning anomaly score: 
 

sDL(t) = λ1sLSTM(t)+λ2sAE(t) 

 

(12) 
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18: Compute the final anomaly score: 

S(t) = wARIMAfinal (t)sARIMA(t)+wDLfinal(t)sDL(t) 

19: Anomaly Detection 
20: Flag data point at time t as an anomaly if: 

 

(13) 

S(t) > µS +κσS (14) 
 

     with σˆLSTM(t) and θAE representing the estimated 

uncertainties. The composite deep learning anomaly score, 

sDL(t), is a weighted combination of sLSTM(t) and sAE(t), as 

shown in Equation (15). Finally, the overall anomaly score 

S(t) is synthesized by combining the weighted anomaly 

scores from the ARIMA and deep learning components, as 

per Equation (16). An anomaly is flagged when S(t) exceeds 

a predefined threshold, defined in Equation (17) by the 

historical mean µS and standard deviation σS of the anomaly 

scores, along with a sensitivity parameter κ. Data points with 

an anomaly score exceeding this threshold are flagged as 

anomalies. 

   To determine whether a data point is anomalous, a threshold 

is applied to the final anomaly score S(t). The anomaly 

detection condition is defined as: 

 S(t) > µS + κσS (15) 

where: 

• S(t): The final, combined anomaly score at time t. 

• µS: The historical mean of the anomaly scores. 

• κ: A sensitivity parameter that controls the threshold for 

anomaly detection. 

• σS: The historical standard deviation of the anomaly 

scores. 

   Data points with an anomaly score exceeding this threshold 

are flagged as anomalies. The threshold is dynamically 

determined based on the historical distribution of anomaly 

scores. Specifically, µS and σS are calculated from the anomaly 

scores obtained during the training phase, using a rolling 

window approach to capture the evolving characteristics of 

the data. The parameter κ serves as a sensitivity parameter, 

allowing for the adjustment of the threshold based on the 

desired tradeoff between precision and recall. Higher values 

of κ result in a higher threshold, leading to fewer anomalies 

being detected (higher precision, lower recall), while lower 

values of κ result in a lower threshold, leading to more 

anomalies being detected (lower precision, higher recall). 

In this study, the value of κ was determined empirically by 

evaluating the performance of the framework on a validation 

set. The optimal κ was selected based on the highest F1score 

achieved on the validation set, ensuring a balanced trade-off 

between precision and recall. This approach allows the 

threshold to be adapted to the specific characteristics of the 

dataset and the desired level of sensitivity to anomalies. 

Typically, values of κ between 1 and 3 are considered, with 

the specific value chosen based on the validation set 

performance. 

   Following the algorithmic framework, the methodology 

includes detailed procedures for hyperparameter tuning and 

model training. 

A. Model Training and Parameter Tuning 

     The proposed deep learning architecture employs the 

Adam optimizer [22], incorporating an adaptive early 

stopping mechanism that terminates training after 

consecutive epochs without validation loss improvement. The 

framework implements a sophisticated walk-forward 

validation protocol integrated with Bayesian hyperparameter 

optimization, where models are iteratively trained on 

expanding historical windows with subsequent out-of-sample 

predictions. This Bayesian approach efficiently explores the 

hyperparameter space for both LSTM and VAE-LSTM 

components, offering superior parameter refinement 

compared to traditional grid or random search methods. 

Performance metrics (precision, recall, F1-score) 

dynamically optimize ensemble weights, while the 

computational infrastructure, powered by an NVIDIA Tesla 
V100 accelerator with 32 GB VRAM, facilitates efficient 

parallel processing with a theoretical complexity of O(N · M · 
L · U2), where N, M, L, and U denote sample size, feature 

dimensionality, network depth, and maximum hidden layer 

width, respectively. The implementation leverages batch 

processing, automated checkpointing, and optimized memory 

management strategies specifically designed for high-

dimensional time series data, ensuring both computational 

efficiency and experimental reproducibility across different 

temporal evaluation periods. 

III. IV. EXPERIMENTAL EVALUATION 

   This section presents a comprehensive evaluation of the 

proposed hybrid framework against state-of-the-art anomaly 

detection methodologies using BRICS macroeconomic 

indicators. The experimental validation encompasses both 

traditional statistical approaches and modern deep learning 

architectures. 

A. Baseline Methods and Implementation 

The comparative analysis includes seven distinct 

methodologies: 

1) Linear Stochastic Process Models: 

• ARIMA: Order selection (p ∈ {0,...,5}, d ∈ {0,1,2}, q ∈ 

{0,...,5}) 

• OCSVM: Kernel K ∈ {linear,RBF}, γ ∈ [10−3,10−1] 2) 

Non-linear Neural Sequence Models: 

• LSTM: Hidden layers L ∈ {1,...,4}, units/layer h ∈ {32k : 

k ∈ [1,8]} 

• VAE-LSTM: Latent dimension z ∈ [10,50], 

encoder/decoder depths E,D ∈ {1,2,3} • AE: Layers ∈ 

{1,2,3}, units ∈ {32k : k ∈ [1,8]} 3) Algorithmic 

Ensemble Frameworks: 

• IF: Estimators n ∈ [100,1000], contamination α ∈ 

[0.01,0.5] 
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B. Performance Metrics and Evaluation Protocol 

     The detection performance is evaluated using four 

standard metrics: True Positive Rate (TPR), False Positive 

Rate (FPR), Area Under ROC Curve (AUC), and Area Under 

PrecisionRecall Curve (PR-AUC). The framework’s 

detection threshold, governed by the sensitivity parameter κ 
in Equation (15), was optimized through Bayesian 

optimization within the range [1.5,4.5]. The optimal 

threshold parameters {κ∗,α∗} were determined by maximizing: 

 J(κ,α) = αAUC(κ) + (1 − α)(1 − FPR(κ)) (16) 

 

 

where α ∈ [0,1] balances the trade-off between detection 

accuracy and false alarms. The optimization yielded κ∗ = 3.2 
and α∗ = 0.7, achieving an AUC of 0.926 with FPR ¡ 0.068, 

establishing a robust detection threshold for macroeconomic 

anomalies. 

A. C. Comparative Analysis 

   Table 2 summarizes the comparative evaluation of the 

proposed hybrid framework against baseline methods. To 

ensure a comprehensive assessment, we employ four 

complementary metrics: TPR, FPR, AUC, and PR-AUC. 

The proposed hybrid framework demonstrates superior 

detection capabilities with an AUC of 0.926 and PR-AUC of 

0.839, representing significant improvements over both 

traditional statistical approaches (ARIMA: 15.6%, 24.7%) 

and advanced deep learning baselines (VAE-LSTM: 2.8%, 

4.4%).  

 

 

 

 

   The framework maintains exceptional precision-recall 

balance with a TPR of 0.847 while achieving a notably low 

FPR of 0.068, outperforming existing methods particularly 

during economic regime transitions where traditional 

approaches often generate spurious alerts. 

Table 1. Hyperparameter configuration space for hybrid anomaly detection framework components 

 

 A. Linear Stochastic Process Modeling 

Model Control Parameters (θ)  Search Space Parameter Characteristics 

ARIMA Autoregressive Order (p)  p ∈{0,...,5} Historical lag dependency order for AR component 

Integrated Order (d)  d ∈{0,1,2} Degree of differencing for stationarity 

transformation 

Moving Average Order (q)  q ∈{0,...,5} Error terms lag order for MA component 

 B. Non-linear Deep Learning Architectures 

LSTM Learning Rate (η)  η ∈ [10−4,10−1] Gradient descent step size with exponential decay 

schedule 

Hidden Layer Count (L)  L ∈{1,2,3,4} Network depth for hierarchical feature extraction 

Hidden Units (h)  h ∈{32k : k ∈ [1,8]} Dimensionality of hidden state representation per 

layer 

Dropout Probability (pd)  pd ∈ [0,0.5] Stochastic regularization

 coefficient for network weights 

Mini-batch Size (B)  B ∈{32,64,128} Stochastic optimization subset cardinality 

Sequence Length (τ)  τ ∈{5k : k ∈ [2,10]} Temporal context window for sequential 

dependencies 

VAE-LSTM Latent Dimension (z)  z ∈ [10,50] Compressed representation dimensionality in latent 

space 

Encoder Depth (E)  E ∈{1,2,3} Hierarchical compression layers for feature encoding 

Decoder Depth (D)  D ∈{1,2,3} Hierarchical reconstruction layers for latent 

decoding 

Activation Function (ϕ)  ϕ ∈{ReLU,tanh,σ} Non-linear transformation for hidden 

representations 
Note: Optimal configuration vector θ∗ for the hybrid framework (comprising ARIMA, LSTM, and VAE-LSTM components) was determined via Bayesian 

optimization, minimizing validation loss Lval across k-fold walk-forward validation while preserving temporal dependencies. 
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    The framework’s robust performance across diverse 

economic conditions, especially its superior FPR compared to 

ARIMA (0.068 vs 0.156), validates its effectiveness for 

practical deployment in macroeconomic monitoring systems. 

These results, achieved across multiple evaluation metrics 

and economic scenarios, establish the framework’s viability 

as a reliable tool for macroeconomic surveillance, particularly 

in emerging economies where early anomaly detection is 

crucial for policy interventions. 

 

 

 

 

Table 2. Comparative analysis of anomaly detection 

performance 

 

Method  
Evaluation Metrics 

 

TPR FPR AUC PR-AUC 

HF 0.847 0.068 0.926 0.839 

VAE-LSTM 0.812 0.085 0.901 0.804 

LSTM 0.785 0.092 0.887 0.779 

AE 0.764 0.108 0.865 0.758 

IF 0.743 0.125 0.842 0.732 

OCSVM 0.721 0.138 0.828 0.709 

ARIMA 0.685 0.156 0.801 0.673 

Note: Best results are in bold. All metrics are averaged over 5-fold 

crossvalidation with standard deviation < 0.02. 

B.  Experimental Validation and Performance Analysis of 

Autoencoder-Based Anomaly Detection System 

     The proposed autoencoder-based anomaly detection 

framework implements a threshold-based detection 

mechanism utilizing reconstruction error distributions for 

quantitative assessment. To validate the system’s efficacy, we 

conducted extensive experiments across multiple threshold 

configurations, analyzing the model’s discriminative 

capabilities and operational characteristics. The evaluation 

framework employs standard performance metrics to measure 

detection accuracy and reliability. 

Table 3. detection performance across threshold configurations 

 

Threshold 
(Percentile) 

Precision Recall F1-score 

90th 0.873 0.912 0.892 

95th 0.921 0.867 0.893 

99th 0.968 0.783 0.866 

 

    Experimental evaluation across threshold configurations 

revealed distinct performance characteristics. The 95th 

percentile threshold achieved optimal equilibrium with 

precision of 0.921 and recall of 0.867, outperforming both the 

90th percentile (precision: 0.873, recall: 0.912) and 99th 

percentile (precision: 0.968, recall: 0.783) configurations. 

This empirical analysis demonstrates that the autoencoder 

effectively models normal network patterns while 

maintaining robust anomaly detection capabilities. The 95th 

percentile threshold configuration provides the most balanced 

performance metrics for practical network security 

implementations, though specific deployment scenarios may 

warrant threshold adjustments based on security 

requirements. 

IV. SENSITIVITY ANALYSIS AND ROBUSTNESS 

EVALUATION 

    Systematic evaluation of the framework’s stability 

characteristics across strategic operating points (α ∈ 
{0.25,0.5,0.75}) demonstrated consistent performance in 

detection capabilities. The F1-score maintained robust values 

of 0.892, 0.915, and 0.887 across the parametric spectrum, 

with optimal performance at α = 0.5 achieving precision of 

0.907 and recall of 0.923. The framework exhibited 

remarkable stability with F1-score standard deviation below 

0.015 and AUROC consistently exceeding 0.95, validating its 

robustness for practical deployment in dynamic network 

environments. 

V.  CONCLUSION 

     This paper introduced a hybrid framework for anomaly 

detection in macroeconomic time series data, combining 

ARIMA modeling with LSTM networks and VAE-LSTM 

architectures. Evaluated on BRICS nations’ macroeconomic 

indicators, our framework achieved superior performance 

metrics (AUC: 0.926, PR-AUC: 0.839) compared to state-of-

the-art methods. The dynamic weighting mechanism, 

incorporating temporal smoothing and macroeconomic state-

dependent adjustments, demonstrated robust adaptability to 

market variations, with sensitivity analysis confirming 

framework stability across different α parameter 

configurations (F1-scores: 0.8920.915). Future research will 

focus on incorporating attention mechanisms within the 

LSTM and VAE-LSTM architectures and developing real-

time implementation with online learning capabilities for 

enhanced economic forecasting and risk management. 
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